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Knot complexity and the probability of random knotting
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The probability of a random polygon~or a ring polymer! having a knot typeK should depend on the
complexity of the knotK. Through computer simulation using knot invariants, we show that the knotting
probability decreases exponentially with respect to knot complexity. Here we assume that some aspects of knot
complexity are expressed by the minimal crossing numberC and the ‘‘rope length’’ ofK, which is defined by
the smallest length of rope with unit diameter that can be tied to make the knotK.
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I. INTRODUCTION

Various species of knotted polymers have been syn
sized and observed in chemistry and biology in the last
decades@1–4#. Once a ring polymer is formed, its topolog
cal state is unique and invariant. The topological constra
on the ring polymer should be nontrivial. It may restrict t
available degrees of freedom in the configuration space
the polymer, to a great extent. Consequently, it may lead
large entropic reduction, which is related to the probability
random knotting, as we shall see shortly.

For a knotK, we define the knotting probabilityPK(N) by
the probability that the topology of a random polygon withN
nodes is given by the knotK. If a ring polymer is under the
topological constraint of the knotK, then the decrease of th
polymer entropy is given byDSK52kB ln PK (N), where
PK(N) is the ratio of the volume of the configuration spa
under the topological constraint to that of no topological co
straint. The knotting probabilityPK(N) should also corre-
spond to the probability that a ring polymer ofN Kuhn units
have the knotK when it is closed randomly during its syn
thesis. The knotting probabilities have been measured as
fractions of knotted species of circular DNAs@3,4#.

Let us now discuss how to express the complexity
knots. We could classify knots completely, if we might kno
all the topological properties that are invariant under a
continuous deformation of the spatial configurations. The
pology of a given polygon can be effectively detected
calculating some topological invariants such as the Al
ander polynomialDK(t) and the Vassiliev-type invariant
vn(K). Although the invariants are practically useful fo
computer simulations@5,6#, it is not easy to derive any ex
plicit topological properties or meanings from them. Let
consider the minimal number of crossing points in the k
diagram of a knotK. We denote it byC, or uKu for the knot
K. The minimal crossing numberC should be a measure o
the complexity of knots. The numberC is useful in studying
statistical or dynamical properties of knotted ring polyme
@7,8#. There is some argument on the mean-square radiu
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gyration of knotted ring polymers with respect toC @7#.
However,C is rather weak as a topological invariant. Th
number of knots that have the same numberC increases rap-
idly: there are 165 primes knots which have ten crossing

Recently, the concept of ideal knots has attracted m
interest@9–11#. One of the most ideal~or elegant! geometric
representations of a knot should be given by such a clo
tube with uniform diameter that gives the largest ratio of t
diameter to the tube length. We call such geometric repres
tations ideal knots, briefly. Given a knotK, the ratio of the
tube length to the diameter of its ideal knot is called the ro
length ,(K) of the knotK @12#. For a ring polymer with a
knot typeK, Grosberget al. @11# discussed a topological in
variant p of K, which is defined by the aspect ratio of th
length to the diameter of such a geometric tubular repres
tation of K that is maximally inflated, i.e., the ideal knot o
K. The invariantp of K is thus nothing but the rope lengt
,(K). The rope length,(K) should be a measure of kno
complexity. It could be more powerful thanC: we have a
conjecture that different knots should have different valu
of ,(K). Katritch et al. have obtained ideal knots for 4
different knots@9,10#. The rope length,(K) should be useful
for describing flexible DNA knots in thermal equilibrium@9#.
Furthermore, it should also be useful for statistical or d
namical studies on knotted ring polymers@13,14#.

The N dependence of the knotting probability has be
studied through computer simulations,@5,15–23# and it is
found that the probability of the unknot~the trivial knot!
decreases exponentially with respect toN,

P0~N!5C0 exp~2N/Nc!, ~1!

whereC0 andNc are fitting parameters. For some nontrivi
knots (31,41,51,52), knotting probabilities have been evalu
ated numerically for several different models of rando
polygons and self-avoiding polygons@19–23#. Through the
simulations using the Vassiliev-type invariants, it is fou
that the probabilityPK(N) as a function ofN can be ex-
pressed as

PK~N!5CKS N

NK
D mK

expS 2
N

NK
D . ~2!
©2002 The American Physical Society01-1
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Here CK , NK , and mK are fitting parameters to be dete
mined from the numerical results. The expressions~1! and
~2! should correspond to the asymptotic expansion of ren
malization group arguments. Numerically, we see that
estimates ofNK should be given by almost the same val
for any knotK @20–22#, and therefore theNK’s are almost
equal toNc , which depends on the model. We also obse
that the valuemK of a knot K should be universal for the
different models@21#.

In this paper, we discuss how the knotting probabil
PK(N) of a knotK should depend on its complexity whileN
being fixed, or in short, the knot dependence of the norm
ization constantCK . Evaluating the knotting probabilities o
several prime knots for Gaussian random polygons, we
serve a rough tendency that the amplitudeCK decreases ex
ponentially with respect to the rope length,(K). The nu-
merical result seems to be favorable to Grosberg’s conjec
@13# that the probabilityPK(N) as a function of the aspec
ratio p ~i.e., rope length,(K)) should be given by an expo
nential function

PK~N!; exp~2N/Nc2sp!. ~3!

Here s is a constant. At this stage, however, we could n
judge whether the conjecture is valid, since the data po
scatter outside the range of statistical errors. However,
show another explicit statistical behavior for a version of
knotting probability. Let us define the average knotting pro
ability Pave(N,C) by

Pave~N,C!5 (
K:uKu5C

PK~N!/AC . ~4!

Here the sum is over such knots that have the same min
crossing numberC, and AC denotes the number of prim
knots that have the same minimal crossing numberC. For
instance, we haveA35A451, A552, andA653. Then, we
shall see from the data that the average knotting probab
decreases exponentially with respect toC. Furthermore, if
we consider the average of the rope lengths over such k
that have the sameC,

^, &5 (
K:uKu5C

,~K !/AC , ~5!

then we see that the average knotting probability also dec
exponentially with respect to the average^, &.

II. THE METHOD OF SIMULATIONS

Using the conditional probability@15#, we construct a
large number of Gaussian random polygons, sayM polygons,
of N nodes forN5300, 500 and 1000. Then, the knottin
probability of a knotK is evaluated byPK(N)5MK /M .
HereMK is the number of polygons with the knotK, andM
is given byM5105 to each of the three numbers ofN.

In order to detect the knot type of a give polygon, w
employ three knot invariants: the determinantuDK(t521)u
of a knotK, the Vassiliev-type invariantsv2(K), anduv3(K)u
of the second and third degrees, respectively. We eval
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MK , after enumerating the number of the polygons that h
the same set of the values of the three invariants for the k
K. Using uv3(K)u, we do not distinguish the chirality of the
knot, i.e., the right-handed knots and the left-handed o
@6,24#. Furthermore, we do not consider six knots (89 , 810,
811, 818, 820, and 821) in any of the simulations in the
paper. They have the same values of the three invariant
those of some composite knots.

III. RESULTS AND DISCUSSION

The estimates of the average knotting probabil
Pave(N,C) are plotted in Fig. 1 against the minimal crossin
numberC, up to C58. It is clear in Fig. 1 that the averag
knotting probabilityPave(N,C) decreases exponentially wit
respect toC. We remark that error bars correspond to o
standard deviation in all the four figures in the paper.

Let us now discuss the knotting probability in terms of t
rope length. In Fig. 2, the knotting probabilitiesPK(N) for
some prime knots are plotted against the rope length,(K),
whereN is kept constant. We note that the values of,(K)

FIG. 1. Average knotting probabilityPave(N,C) vs the minimal
crossingsC for 29 prime knots with up toC58. The line is given
by Pave(N,C)5Pave(N,0)exp(2aC) with a51.16.

FIG. 2. Knotting probabilityPK(N) with N5500 vs the rope
length,(K) for 29 prime knots with up toC58.
1-2
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for the 42 knots are listed in Table 1 of Ref.@10#, which are
used in the paper. We see in Fig. 2 that there is a ro
tendency that the knotting probability of a prime knot d
crease exponentially with respect to the rope length,(K).
The observation should be useful. However, it seems
there is no clear relation between the knotting probabi
PK(N) and the rope length,(K) ~i.e., the aspect ratiop),
since the data points of larger values of,(K) deviate from
the possible regression line, considerably. Here we recall
error bars correspond to one standard deviation.

Let us discuss the knotting probability for such knots th
have the same minimal crossing number. For instance, t
are two knots with five minimal crossings: 51 and 52. For
Gaussian polygons, the knotting probability of 52 is always
larger than that of 51. This is consistent with the simulatio
of the cylindrical self-avoiding polygons@23#. Let us con-
sider the three prime knots withC56. We observe that the
knotting probabilities of 61 and 62 are almost the same
while that of 63 is always smaller than the other two. F
prime knots withC57 or 8, the data points are so close
each other that it is difficult to give any definite ranking o
them.

In terms of the average value^, &, which is a function of
C, the estimates of the average knotting probabi
Pave(N,C) are expressed in Fig. 3. We clearly see the ex
nential decay of the average knotting probabilityPave(N,C)
with respect tô , &. It is similar to Fig. 1. This result show
that the entropy of a ring polymer with knotK decreases with

FIG. 3. Average knotting probabilityPave(N,C) vs the average
^,& for 29 prime knots with up toC58. The line is given by
Pave(N,C)5Pave(N,0)exp(2b^,&) with b50.30.
ol.
d

c.
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respect to knot complexity expressed in terms of^, & or C.
Here it is also suggested that^, & should be approximately
linear toC.

Let us discuss theN dependence of the knotting probab
ity in terms of knot complexity. The ratioPK(N)/P31

(N) of

a knotK against the rope length,(K) is plotted in Fig. 4 for
the three numbers ofN: N5300, 500, and 1000. Here w
note that the trefoil knot (31) is dominant among the non
trivial prime knots for the threeN’s. We find again the rough
tendency that the ratioPK(N)/P31

(N) decays exponentially

with respect to the rope length,(K). Moreover, for any knot
K, the ratio PK(N)/P31

(N) is given by almost the sam
value for the three numbers ofN, with respect to error bars a
seen in Fig. 4. Thus, the ratiosPK(N)/P31

(N) are indepen-
dent ofN.

The above observation in Fig. 4 can be explained by us
the fitting formula~2!. Let us assume that for a prime knotK,
the exponentmK of Eq. ~2! should be given by almost th
same value. Then, we havePK(N)/P31

(N);CK /C31
, which

is clearly independent ofN. Thus, in terms of the formula
~2!, the rough exponential decay of the knotting probabil
with respect top is closely related to the knot complexity
dependence of the amplitudeCK .

ACKNOWLEDGMENT

We would like to thank Professor K. Ito for helpful dis
cussions.

FIG. 4. The ratio of knotting probabilitiesPK(N)/P31
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rope length,(K) for N5300, 500, and 1000.
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