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Knot complexity and the probability of random knotting

Miyuki K. Shimamurg
Graduate School of Advanced Material Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Tetsuo Deguchi
Department of Physics, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
(Received 18 July 2002; published 14 October 2002

The probability of a random polygofor a ring polymer having a knot typeK should depend on the
complexity of the knotK. Through computer simulation using knot invariants, we show that the knotting
probability decreases exponentially with respect to knot complexity. Here we assume that some aspects of knot
complexity are expressed by the minimal crossing nuniband the “rope length” ofK, which is defined by
the smallest length of rope with unit diameter that can be tied to make thekknot
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I. INTRODUCTION gyration of knotted ring polymers with respect @ [7].
However, C is rather weak as a topological invariant. The
Various species of knotted polymers have been syntheaumber of knots that have the same numBéncreases rap-
sized and observed in chemistry and biology in the last twddly: there are 165 primes knots which have ten crossings.
decade$l—4]. Once a ring polymer is formed, its topologi- Recently, the concept of ideal knots has attracted much
cal state is unique and invariant. The topological constraininteresf9—11]. One of the most idedbr elegant geometric
on the ring polymer should be nontrivial. It may restrict the representations of a knot should be given by such a closed
available degrees of freedom in the configuration space dube with uniform diameter that gives the largest ratio of the
the polymer, to a great extent. Consequently, it may lead to diameter to the tube length. We call such geometric represen-
large entropic reduction, which is related to the probability oftationsideal knots briefly. Given a knot, the ratio of the
random knotting, as we shall see shortly. tube length to the diameter of its ideal knot is called the rope
For a knotK, we define the knotting probability(N) by  length¢(K) of the knotK [12]. For a ring polymer with a
the probability that the topology of a random polygon with ~ knot typeK, Grosberget al.[11] discussed a topological in-
nodes is given by the knd(. If a ring polymer is under the variantp of K, which is defined by the aspect ratio of the
topological constraint of the knd¢, then the decrease of the length to the diameter of such a geometric tubular represen-
polymer entropy is given byAS.=—kgInP(N), where tation ofK that is maximally inflated, i.e., the ideal knot of
P«(N) is the ratio of the volume of the configuration spaceK. The invariantp of K is thus nothing but the rope length
under the topological constraint to that of no topological con-¢(K). The rope lengthf (K) should be a measure of knot
straint. The knotting probability?(N) should also corre- complexity. It could be more powerful tha@: we have a
spond to the probability that a ring polymer Nfkuhn units ~ conjecture that different knots should have different values
have the knoK when it is closed randomly during its syn- of €(K). Katritch et al. have obtained ideal knots for 42
thesis. The knotting probabilities have been measured as thifferent knot49,10]. The rope lengti (K) should be useful
fractions of knotted species of circular DNA3,4]. for describing flexible DNA knots in thermal equilibriuf8].
Let us now discuss how to express the complexity ofFurthermore, it should also be useful for statistical or dy-
knots. We could classify knots completely, if we might know namical studies on knotted ring polymes3,14].
all the topological properties that are invariant under any The N dependence of the knotting probability has been
continuous deformation of the spatial configurations. The tostudied through computer simulatiori§,15-23 and it is
pology of a given polygon can be effectively detected byfound that the probability of the unkndthe trivial kno)
calculating some topological invariants such as the Alex-decreases exponentially with respeciNo
ander polynomialAg(t) and the Vassiliev-type invariants
v,(K). Although the invariants are practically useful for Po(N)=Cqexp(—N/No), (€N
computer simulation$5,6], it is not easy to derive any ex- - o
plicit topological properties or meanings from them. Let usWhereCo andN, are fitting parameters. For some nontrivial
consider the minimal number of crossing points in the knotNOts (3,41,5:,5,), knotting probabilities have been evalu-
diagram of a knoK. We denote it byC, or |K| for the knot ated numerically for §eyeral different models of random
K. The minimal crossing numbeg should be a measure on Pelygons and self-avoiding polygof&9-23. Through the
the complexity of knots. The numbéris useful in studying simulations using the Vassiliev-type invariants, it is found
statistical or dynamical properties of knotted ring polymersthat the probabilityP(N) as a function ofN can be ex-
[7,8]. There is some argument on the mean-square radius Gressed as
N | M N
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Here Cx, Nk, andmg are fitting parameters to be deter- T
mined from the numerical results. The expressi@hsand + N=300
(2) should correspond to the asymptotic expansion of renor- 5 N=500
malization group arguments. Numerically, we see that the 0.1 o N=1000
estimates ofNy should be given by almost the same value
for any knotK [20-22, and therefore th&lk's are almost
equal toN,, which depends on the model. We also observe
that the valuemy of a knot K should be universal for the
different modeld21]. [

In this paper, we discuss how the knotting probability 0.001
P« (N) of a knotK should depend on its complexity whilé F
being fixed, or in short, the knot dependence of the normal- [ ¢
ization constan€y . Evaluating the knotting probabilities of 0.0001 bmmmteein e el
several prime knots for Gaussian random polygons, we ob- ) 2 3 4 5 6 7 8 9
serve a rough tendency that the amplittle decreases ex- c

pon_entlally with respect to the rope lengtifK). '!'he nu- FIG. 1. Average knotting probabiliti? ,,o(N,C) vs the minimal
merical result seems to be favorable to Grosberg's conjectur@rossingsc for 29 prime knots with up t€=8. The line is given

[13] tha_t the probabilityP,(N) as a functi_on of the aspect by Poyo(N,C) = Poyo(N,0)exp(—aC) with a=1.16.
ratio p (i.e., rope lengti (K)) should be given by an expo-
nential function

P ave (N.C)

001k

M, after enumerating the number of the polygons that have
P(N)~ exp( —N/N.—sp). 3) the same set of the values of the three invariants for the knot
K. Using|v3(K)|, we do not distinguish the chirality of the
Here s is a constant. At this stage, however, we could notknot, i.e., the right-handed knots and the left-handed ones
judge whether the conjecture is valid, since the data pointf6,24]. Furthermore, we do not consider six knots (&1,
scatter outside the range of statistical errors. However, w81, 813, 859, and 8, in any of the simulations in the
show another explicit statistical behavior for a version of thepaper. They have the same values of the three invariants as
knotting probability. Let us define the average knotting prob-those of some composite knots.
ability P,,(N,C) by

Ill. RESULTS AND DISCUSSION

Pae(N,C)= Px(N)/Ac. 4
avel ) K:%=C <(N)/Ac @ The estimates of the average knotting probability

, . Paye(N,C) are plotted in Fig. 1 against the minimal crossing
Here the sum is over such knots that have the same minimal;mperc up toC=8. It is clear in Fig. 1 that the average
crossing numbeC, and Ac denotes the number of prime nqtiing probabilityP,,(N,C) decreases exponentially with
knots that have the same minimal crossing numBeFor  espect toC. We remark that error bars correspond to one

instance, we havB;=A,=1, A;=2, andAs=3. Then, we  giandard deviation in all the four figures in the paper.
shall see from the data that the average knotting probability | &t us now discuss the knotting probability in terms of the

decrease_:s exponentially with respect@o Furthermore, if rope length. In Fig. 2, the knotting probabiliti&(N) for
we consider the average of the rope lengths over such knotg) e prime knots are plotted against the rope lerfgt),
that have the same, whereN is kept constant. We note that the valuest¢K)

<e>=; (KA, (5) 1
K:[K|=C F
then we see that the average knotting probability also decays [ ®
exponentially with respect to the average). 0.1F 3
[ °
Il. THE METHOD OF SIMULATIONS g 0.01 [ I *
x VUL E ° 3

Using the conditional probability15], we construct a o i .
large number of Gaussian random polygons, dayolygons, [ .‘
of N nodes forN=300, 500 and 1000. Then, the knotting 0.001 | o * O -
probability of a knotK is evaluated byPc(N)=My /M. : 5,
HereM is the number of polygons with the knkt andM [ g ]
is given byM =10° to each of the three numbers Nf 00001 Lt o v o v o1l

In order to detect the knot type of a give polygon, we 15 2 25! K o ® 9

employ three knot invariants: the determindaf (t=—1)|
of a knotK, the Vassiliev-type invariants,(K), and|v3(K)| FIG. 2. Knotting probabilityP, (N) with N=500 vs the rope
of the second and third degrees, respectively. We evaluatength ¢ (K) for 29 prime knots with up t&€€C=8.
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FIG. 3. Average knotting probabilit,,.(N,C) vs the average

(€) for 29 prime knots with up tadC=8. The line is given
Pave(N,C) = Paye(N,0)exp(= 5(¢)) with 5=0.30.

for the 42 knots are listed in Table 1 of RgL0], which are

by

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 66, 040801R) (2002

W
0.1 = _:
" 3
¥
K-
=
& 0.01
4 N=300
0.001 O N=500
X N=1000
00001 L—m o vt 0
15 20 25 35 40
(K)

FIG. 4. The ratio of knotting probabilitieBK(N)/Psl(N) vs the

rope lengthf¢ (K) for N=300, 500, and 1000.

respect to knot complexity expressed in termg 6§ or C.

used in the paper. We see in Fig. 2 that there is a roughnear toC.
tendency that the knotting probability of a prime knot de-

crease exponentially with respect to the rope lenfftk

The observation should be useful. However, it seems that . . .t
there is no clear relation between the knotting probabilitya knotK against the rope lengtf(K) is plotted in Fig. 4 for
P«(N) and the rope lengtli (K) (i.e., the aspect ratip),
since the data points of larger valuesK) deviate from

the possible regression line, considerably. Here we recall thé[lendency that the rati® (N)/Ps (N) decays exponentially
1

error bars correspond to one standard deviation.

Here it is also suggested that) should be approximately

Let us discuss thdl dependence of the knotting probabil-
)- ity in terms of knot complexity. The rati@K(N)/P3l(N) of

the three numbers afl: N=300, 500, and 1000. Here we
note that the trefoil knot (3 is dominant among the non-
t{ivial prime knots for the thre®l’s. We find again the rough

Let us discuss the knotting probability for such knots thatWith respect to the rope lengtt(K). Moreover, for any knot
have the same minimal crossing number. For instance, thef& the ratio P (N)/P3 (N) is given by almost the same

are two knots with five minimal crossings; &nd 5,. For
Gaussian polygons, the knotting probability of 5 always
larger than that of & This is consistent with the simulation

of the cylindrical self-avoiding polygong23]. Let us con-

sider the three prime knots witB=6. We observe that the
knotting probabilities of § and 6, are almost the same,

value for the three numbers b with respect to error bars as
seen in Fig. 4. Thus, the ratich<(N)/P31(N) are indepen-

dent of N.

The above observation in Fig. 4 can be explained by using

the fitting formula(2). Let us assume that for a prime kn6t
the exponenimy of Eq. (2) should be given by almost the

While that of @ is always smaller than _the other two. For same value. Then, we ham((N)/psl(N)~cK/(331, which
prime knots withC=7 or 8, the data points are so close {0 s ¢learly independent oi. Thus, in terms of the formula
each other that it is difficult to give any definite ranking on (2), the rough exponential decay of the knotting probability
with respect top is closely related to the knot complexity-

them.

In terms of the average valyé ), which is a function of

C, the estimates of the average knotting probability
Pave(N,C) are expressed in Fig. 3. We clearly see the expo-
nential decay of the average knotting probabifty,.(N,C)

with respect ta(¢ ). It is similar to Fig. 1. This result shows
that the entropy of a ring polymer with knktdecreases with cussions.

dependence of the amplitudz .
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